Алгоритм Краскала - это алгоритм минимального остовного дерева, что принимает граф в качестве входных данных и находит подмножество ребер этого графа, который формирует дерево, включающее в себя каждую вершину, а также имеет минимальную сумму весов среди всех деревьев, которые могут быть сформированы из графа.
Как работает алгоритм Краскала
Он подпадает под класс алгоритмов, называемых «жадными» алгоритмами , которые находят локальный оптимум в надежде найти глобальный оптимум.
Мы начинаем с ребер с наименьшим весом и продолжаем добавлять ребра, пока не достигнем нашей цели.
Шаги для реализации алгоритма Краскала следующие:
- Сортировать все ребра от малого веса до высокого.
- Возьмите ребро с наименьшим весом и добавьте его в остовное дерево. Если добавление ребра создало цикл, то отклоните это ребро.
- Продолжайте добавлять ребра, пока не достигнете всех вершин.
Пример алгоритма Краскала
Алгоритм Краскала. Псевдокод.
Любой минимальный алгоритм остовного дерева вращается вокруг проверки, создает ли ребро цикл или нет.
Наиболее распространенный способ выяснить это - алгоритм Union FInd . Алгоритм Union-Find разделяет вершины на кластеры и позволяет нам проверить, принадлежат ли две вершины одному кластеру или нет, и, следовательно, решить создает ли добавление ребра цикл.
KRUSKAL(G): A = ∅ For each vertex v ∈ G.V: MAKE-SET(v) For each edge (u, v) ∈ G.E ordered by increasing order by weight(u, v): if FIND-SET(u) ≠ FIND-SET(v): A = A ∪ {(u, v)} UNION(u, v) return A
Реализация алгоритма Краскала в C ++
Ниже приведен код для реализации в C ++. Мы используем стандартные библиотеки шаблонов, чтобы сделать нашу работу проще и чище.
#include <iostream> #include <vector> #include <algorithm> using namespace std; #define edge pair<int,int> class Graph { private: vector<pair<int, edge>> G; // graph vector<pair<int, edge>> T; // mst int *parent; int V; // number of vertices/nodes in graph public: Graph(int V); void AddWeightedEdge(int u, int v, int w); int find_set(int i); void union_set(int u, int v); void kruskal(); void print(); }; Graph::Graph(int V) { parent = new int[V]; //i 0 1 2 3 4 5 //parent[i] 0 1 2 3 4 5 for (int i = 0; i < V; i++) parent[i] = i; G.clear(); T.clear(); } void Graph::AddWeightedEdge(int u, int v, int w) { G.push_back(make_pair(w, edge(u, v))); } int Graph::find_set(int i) { // If i is the parent of itself if (i == parent[i]) return i; else // Else if i is not the parent of itself // Then i is not the representative of his set, // so we recursively call Find on its parent return find_set(parent[i]); } void Graph::union_set(int u, int v) { parent[u] = parent[v]; } void Graph::kruskal() { int i, uRep, vRep; sort(G.begin(), G.end()); // increasing weight for (i = 0; i < G.size(); i++) { uRep = find_set(G[i].second.first); vRep = find_set(G[i].second.second); if (uRep != vRep) { T.push_back(G[i]); // add to tree union_set(uRep, vRep); } } } void Graph::print() { cout << "Edge :" << " Weight" << endl; for (int i = 0; i < T.size(); i++) { cout << T[i].second.first << " - " << T[i].second.second << " : " << T[i].first; cout << endl; } } int main() { Graph g(6); g.AddWeightedEdge(0, 1, 4); g.AddWeightedEdge(0, 2, 4); g.AddWeightedEdge(1, 2, 2); g.AddWeightedEdge(1, 0, 4); g.AddWeightedEdge(2, 0, 4); g.AddWeightedEdge(2, 1, 2); g.AddWeightedEdge(2, 3, 3); g.AddWeightedEdge(2, 5, 2); g.AddWeightedEdge(2, 4, 4); g.AddWeightedEdge(3, 2, 3); g.AddWeightedEdge(3, 4, 3); g.AddWeightedEdge(4, 2, 4); g.AddWeightedEdge(4, 3, 3); g.AddWeightedEdge(5, 2, 2); g.AddWeightedEdge(5, 4, 3); g.kruskal(); g.print(); return 0; }
Когда мы запускаем программу, мы получаем вывод как:
Edge : Weight 1 - 2 : 2 2 - 5 : 2 2 - 3 : 3 3 - 4 : 3 0 - 1 : 4
Алгоритм Краскала vs Прима
Алгоритм Прима является еще одним популярным алгоритмом минимального остовного дерева, который использует другую логику для нахождения MST графа. Вместо того, чтобы начинать с ребра, алгоритм Прима начинается с вершины и продолжает добавлять ребра с наименьшим весом, которых нет в дереве, пока все вершины не будут покрыты.
Я так понимаю, это перевод статьи?
Вот такие фразы выглядят стремно: "Любой минимальный алгоритм остовного дерева"
"популярным алгоритмом минимального остовного дерева"
Возможно, должно быть "алгоритмом построения ..."
Первое предложение тоже несогласованное.
Странной кажется идея запихивания графа в класс. Да и все равно можно выстрелить в ногу, вызвав print до вызова kruskal.
Не очевидна связь приведенного кода с описанным алгоритмом. - Что это за массив parent и почему (кстати) он не уничтожается в деструкторе?
Псевдокод не понятный. Что делает функция UNION(u, v) ?
Обе строки 7 и 8 вложены внутрь блока if?
У нормальной реализации алгоритма сложность N*log(N). А у вас для каждого узла графа вызывается функция find_set, которая имеет трудоемкость O(N). И того - O(N^2). Функция find_set при этом вообще особо кривая. Не понятно что она должна вернуть в каком случае.
Ну и еще, вот эта структура выглядит очень плохо:
> G;
vector
Ну потому что edge - это тоже pair и в результате, во всех этих second.first и second.second хрен разберешься. Отрефакторить можно, например, введением нормальной структуры для дуги (вместо пары). При этом, в эту же дугу стоит засунуть длину. Легко ли въехать где тут номер дуги, а где - ее длина?