Дмитрий
Дмитрий7. September 2022 14:40

Technische Lösung einer kubischen Gleichung unter Verwendung der trigonometrischen Formel von Vieta

Inhalt

Wie Sie wissen, ist die Lösung der kubischen Gleichung seit dem 16. Jahrhundert bekannt. Doch auch heute noch können Ingenieure bei der Lösung auf ein Problem stoßen. Diese Komplexität ist auf die Notwendigkeit zurückzuführen, die Wurzel aus komplexen Zahlen zu ziehen. Die bequemste Lösung ist die Vieta trigonometrische Formel , die im Vergleich zu Cardanos Formel viel weniger bekannt ist. Um auf das Thema aufmerksam zu machen, habe ich eine kleine [Bibliothek in C++] geschrieben (https://github.com/Dmitr-as/PolynomialEquations).


Realisierung

Die Bibliothek enthält 3 Familien von Klassen: Polynomgleichung, Polynomgleichungswurzeln und Polynomgleichungswurzel. Die Klassen reduzierter Gleichungen 1., 2. und 3. Grades LinerNormalEquation, QuadraticNormalEquation und CubicNormalEquation werden von der gemeinsamen Schnittstelle AbstractPolynomialEquation geerbt. In diesem Beispiel habe ich mich darauf beschränkt, nur die gegebenen Gleichungen zu betrachten. Ihre Hauptmethoden roots() - gibt einen Zeiger auf die Klasse zurück, die die Lösung der Gleichung speichert, root(int n) - gibt die n-te Wurzel der Gleichung zurück und value(...) - gibt den Wert der Gleichung zurück wenn das gegebene Argument darin eingesetzt wird. Die Funktion decomposed() gibt die Faktorisierung des aktuellen Polynoms zurück. Der Fundamentalsatz der Algebra besagt, dass jedes Polynom mit einem Grad von nicht mehr als 2 faktorisiert werden kann. Daher kann eine Gleichung dritten Grades entweder in 3 Faktoren ersten Grades oder in 1 des ersten und 1 des zweiten Grades zerlegt werden Grad.

Schnittstelle

class AbstractPolynomialEquation
{
public:
    virtual ~AbstractPolynomialEquation() { deleteRoots(); }
    virtual int equationType() const = 0;
    virtual std::list<double> coefficients() const = 0;
    virtual double value( const double &x ) const = 0;
    virtual std::complex<double> value( const std::complex<double> &x ) const = 0;
    virtual std::complex<double> value( const std::unique_ptr<AbstractPolynomialRoot> &x ) {
        if(x->isReal())
            return std::complex<double>( value( x->real() ) );
        return value( x->toComplex() );
    }
    virtual const AbstractPolynomialEquationRoots *roots() const = 0;
    const std::unique_ptr<AbstractPolynomialRoot> root(int number) const { return roots()->root(number); }
    virtual std::list<std::unique_ptr<AbstractPolynomialEquation>> decomposed() const = 0;
    virtual bool isNormal() const = 0;

    friend std::ostream &operator<< (std::ostream &out, const AbstractPolynomialEquation &equation) {
        out << equation.toString() + " = 0.";
        return out;
    }
protected:
    virtual std::string toString() const = 0;
    mutable AbstractPolynomialEquationRoots *myroots = nullptr;
    void deleteRoots() const {
        if(myroots) {
            delete myroots;
            myroots = nullptr;
        }
    }
};

Lineare Gleichung

class LinerNormalEquation : public AbstractPolynomialEquation
{
public:
    explicit LinerNormalEquation(const double &coef0);
    void setCoef0(const double &coef0);

    LinerNormalEquation operator+( const double &val );
    LinerNormalEquation operator-( const double &val );
    LinerNormalEquation operator+( const LinerNormalEquation &eq );
    double operator-( const LinerNormalEquation &eq ) const;

    virtual int equationType() const override {return LINER;}
    virtual std::list<double> coefficients() const override { std::list<double> list; list.push_back( my0 ); list.push_back( 1 ); return list; }
    virtual double value( const double &x ) const override { return x + my0; }
    virtual std::complex<double> value( const std::complex<double> &x ) const override { return x + my0; }
    virtual const AbstractPolynomialEquationRoots *roots() const override;
    virtual std::list<std::unique_ptr<AbstractPolynomialEquation>> decomposed() const override;
    virtual bool isNormal() const override {return true;}
protected:
    virtual std::string toString() const override;
private:
    double my0;
};

Implementierung

LinerNormalEquation::LinerNormalEquation(const double &coef0)
{
    my0 = coef0;
}

void PolynomialEquation::LinerNormalEquation::setCoef0(const double &coef0)
{
    my0 = coef0;
    deleteRoots();
}

LinerNormalEquation LinerNormalEquation::operator+(const double &val)
{
    return LinerNormalEquation( this->my0 + val );
}

LinerNormalEquation LinerNormalEquation::operator-(const double &val)
{
    return LinerNormalEquation( this->my0 - val );
}

LinerNormalEquation LinerNormalEquation::operator+(const LinerNormalEquation &eq)
{
    return LinerNormalEquation( (this->my0 + eq.my0)/2 );
}

double LinerNormalEquation::operator-(const LinerNormalEquation &eq) const
{
    return this->my0 - eq.my0;
}

const AbstractPolynomialEquationRoots *PolynomialEquation::LinerNormalEquation::roots() const
{
    if(!myroots)
        myroots = new LinerEquationRoot( -my0 );
    return myroots;
}

std::list<std::unique_ptr<AbstractPolynomialEquation> > LinerNormalEquation::decomposed() const
{
    std::list<std::unique_ptr<AbstractPolynomialEquation> > root;
    root.push_back( std::make_unique<LinerNormalEquation>( this->my0 ) );
    return root;
}

std::string LinerNormalEquation::toString() const
{
    return std::string("x") + ( my0 > 0 ? std::string("+") : std::string() ) + ( my0 == 0 ? std::string() : std::to_string( my0 ) );
}

Quadratische Gleichung

class QuadraticNormalEquation : public AbstractPolynomialEquation
{
public:
    QuadraticNormalEquation( double coef1, double coef0);
    virtual ~QuadraticNormalEquation() {}
    void setCoef0(const double &coef0);
    void setCoef1(const double &coef1);

    QuadraticNormalEquation operator+( const double &val );
    QuadraticNormalEquation operator-( const double &val );
    QuadraticNormalEquation operator+( const QuadraticNormalEquation &eq );
    QuadraticNormalEquation operator+( const LinerNormalEquation &eq );
    QuadraticNormalEquation operator-( const LinerNormalEquation &eq );

    double discriminant() const;
    virtual int equationType() const override { return QUADRATIC; }
    virtual std::list<double> coefficients() const override { std::list<double> list; list.push_back( my0 ); list.push_back( my1 ); list.push_back( 1 ); return list; }
    virtual double value( const double &x ) const override { return (x + my1)*x + my0; }
    virtual std::complex<double> value( const std::complex<double> &x ) const override { return (x + my1)*x + my0; }
    virtual const AbstractPolynomialEquationRoots *roots() const override;
    virtual std::list< std::unique_ptr<AbstractPolynomialEquation> > decomposed() const override;
    virtual bool isNormal() const override {return true;}
protected:
    virtual std::string toString() const override;
private:
    double my0;
    double my1;
};

Implementierung

QuadraticNormalEquation::QuadraticNormalEquation( double coef1, double coef0)
    : my0(coef0), my1(coef1)
{
}

void QuadraticNormalEquation::setCoef0(const double &coef0)
{
    my0 = coef0;
    deleteRoots();
}

void QuadraticNormalEquation::setCoef1(const double &coef1)
{
    my1 = coef1;
    deleteRoots();
}

QuadraticNormalEquation QuadraticNormalEquation::operator+( const double &val )
{
    return QuadraticNormalEquation( this->my1, this->my0 + val );
}

QuadraticNormalEquation QuadraticNormalEquation::operator-( const double &val )
{
    return QuadraticNormalEquation( this->my1, this->my0 - val );
}

QuadraticNormalEquation QuadraticNormalEquation::operator+(const QuadraticNormalEquation &eq)
{
    return QuadraticNormalEquation( (this->my1+eq.my1)/2, (this->my0+eq.my0)/2 );
}

QuadraticNormalEquation QuadraticNormalEquation::operator-(const LinerNormalEquation &eq)
{
    return QuadraticNormalEquation( this->my1 - 1, this->my0 - eq.coefficients().front() );
}

QuadraticNormalEquation QuadraticNormalEquation::operator+(const LinerNormalEquation &eq)
{
    return QuadraticNormalEquation( this->my1 + 1, this->my0 + eq.coefficients().front() );
}

double QuadraticNormalEquation::discriminant() const
{
    return my1*my1 - 4*my0;
}

const AbstractPolynomialEquationRoots *QuadraticNormalEquation::roots() const
{
    if(!myroots) {
        auto d = discriminant();
        myroots = new QuadraticImageEquationRoots( -my1/2, sqrt(-d)/2 );
    }
    return myroots;
}

std::list<std::unique_ptr<AbstractPolynomialEquation> > QuadraticNormalEquation::decomposed() const
{
    std::list<std::unique_ptr<AbstractPolynomialEquation> > eqs;
    if( this->roots()->rootsType() == QUADRAT_REAL ) {
        eqs.push_back( std::make_unique<LinerNormalEquation>( -this->roots()->root( 1 )->real() ) );
        eqs.push_back( std::make_unique<LinerNormalEquation>( -this->roots()->root( 2 )->real() ) );
    }
    else if( this->roots()->rootsType() == QUADRAT_IMAGE ) {
        eqs.push_back( std::make_unique<QuadraticNormalEquation>( *this ) );
    }
    return eqs;
}

std::string QuadraticNormalEquation::toString() const
{
    return std::string("x^2")
            + ( my1 > 0 ? std::string("+") : std::string("") ) + ( my1==0 ? std::string("") : std::to_string( my1 ) + std::string("*x") )
            + ( my0 > 0 ? std::string("+") : std::string("") ) + ( my0==0 ? std::string("") : std::to_string( my0 ) );
}

kubische gleichung

class CubicNormalEquation : public AbstractPolynomialEquation
{
public:
    CubicNormalEquation(double coef2, double coef1, double coef0);
    void setCoef0(const double &coef0);
    void setCoef1(const double &coef1);
    void setCoef2(const double &coef2);

    CubicNormalEquation operator+( const CubicNormalEquation &eq );
    CubicNormalEquation operator+( const LinerNormalEquation &eq );
    CubicNormalEquation operator-( const LinerNormalEquation &eq );
    CubicNormalEquation operator+( const QuadraticNormalEquation &eq );
    CubicNormalEquation operator-( const QuadraticNormalEquation &eq );

    double discriminant() const;
    double qu() const;
    double re() const;
    double fi() const;
    virtual int equationType() const override {return CUBIC;}
    virtual std::list<double> coefficients() const override { std::list<double> list; list.push_back( my0 ); list.push_back( my1 ); list.push_back( my2 ); list.push_back( 1 ); return list; }
    virtual double value( const double &x ) const override { return ( (x + my2)*x + my1 ) * x + my0; }
    virtual std::complex<double> value( const std::complex<double> &x ) const override { return ( (x + my2)*x + my1 ) * x + my0; }
    virtual const AbstractPolynomialEquationRoots *roots() const override;
    virtual std::list<std::unique_ptr<AbstractPolynomialEquation>> decomposed() const override;
    virtual bool isNormal() const override {return true;}
protected:
    virtual std::string toString() const override;
private:
    double my0;
    double my1;
    double my2;
};

Implementierung

CubicNormalEquation::CubicNormalEquation( double coef2, double coef1, double coef0 )
    : my0(coef0), my1(coef1), my2(coef2)
{
}

void CubicNormalEquation::setCoef0(const double &coef0)
{
    my0 = coef0;
    deleteRoots();
}

void CubicNormalEquation::setCoef1(const double &coef1)
{
    my1 = coef1;
    deleteRoots();
}

void CubicNormalEquation::setCoef2(const double &coef2)
{
    my2 = coef2;
    deleteRoots();
}

CubicNormalEquation CubicNormalEquation::operator+(const CubicNormalEquation &eq)
{
    return CubicNormalEquation( (this->my2+eq.my2)/2, (this->my1+eq.my1)/2, (this->my0+eq.my0)/2 );
}

CubicNormalEquation CubicNormalEquation::operator+( const LinerNormalEquation &eq )
{
    auto coef = eq.coefficients();
    return CubicNormalEquation( this->my2, this->my1 + 1, this->my0 + coef.front() );
}

CubicNormalEquation CubicNormalEquation::operator-( const LinerNormalEquation &eq )
{
    auto coef = eq.coefficients();
    return CubicNormalEquation( this->my2, this->my1 - 1, this->my0 - coef.front() );
}

CubicNormalEquation CubicNormalEquation::operator+( const QuadraticNormalEquation &eq )
{
    auto coef = eq.coefficients();
    return CubicNormalEquation( this->my2 + 1, this->my1 + *next( coef.begin() ), this->my0 + coef.front() );
}

CubicNormalEquation CubicNormalEquation::operator-( const QuadraticNormalEquation &eq )
{
    auto coef = eq.coefficients();
    return CubicNormalEquation( this->my2 - 1, this->my1 - *next( coef.begin() ), this->my0 - coef.front() );
}

double CubicNormalEquation::discriminant() const //
{
    auto q = qu();
    auto r = re();
    return q*q*q - r*r;
}

double CubicNormalEquation::qu() const
{
    return (my2*my2 - my1*3) / 9;
}

double CubicNormalEquation::re() const
{
    return (my2 * (my2*my2*2 - my1*9) + 27*my0) / 54;
}

double CubicNormalEquation::fi() const
{
    auto q = qu();
    auto q_cub = q*q*q;
    auto r = re();
    auto s = q*q*q - r*r;
    if( s > 0 )
        return acos( r/sqrt(q_cub) ) / 3;
    else {
        if( q > 0 ) {
            return acosh( fabs( r )/sqrt( q_cub ) ) / 3;
        } else {
            return asinh( fabs( r )/sqrt( -q_cub ) ) / 3;
        }
    }
}

const AbstractPolynomialEquationRoots *CubicNormalEquation::roots() const
{
    if(!myroots) {
        auto r = re();
        auto q = qu();
        auto a_3 = my2 / 3;
        auto s = q*q*q - r*r;
        if(r==0 && q==0) {
            auto x1 = - a_3;
            myroots = new CubicRealEquationRoots( x1, x1, x1 );
            return myroots;
        }
        if( s == 0 ) {
            auto x1 = -2 * cbrt(r) - a_3;
            auto x23 = cbrt(r) - a_3;
            myroots = new CubicRealEquationRoots( x1, x23, x23 );
            return myroots;
        }

        auto f = fi();
        if( s > 0 ) {
            auto q_sqrt = sqrt( q );
            auto x1 = - 2 * q_sqrt * cos( f ) - a_3;
            auto x2 = - 2 * q_sqrt * cos( f + 2.0 * M_PI / 3 ) - a_3;
            auto x3 = - 2 * q_sqrt * cos( f - 2.0 * M_PI / 3 ) - a_3;
            myroots = new CubicRealEquationRoots( x1, x2, x3 );
        } else {
            if( q == 0) {
                auto x = - cbrt( my0 - a_3*a_3*a_3 ) - a_3;
                auto re = -( my2 + x )/2;
                auto im = sqrt( fabs( (my2 - 3*x)*(my2 + x) - 4*my1 ) )/2;
                myroots = new CubicImageEquationRoots( x, re, im );
                return myroots;
            }
            if( q > 0 ) {
                auto q_sqrt = sqrt( q );
                auto x = - q_sqrt * 2.0 * sgn(r) * cosh( f ) - a_3;
                auto re = q_sqrt * sgn(r) * cosh( f ) - a_3;
                auto im = SQRT_3 * q_sqrt * sinh( f );
                myroots = new CubicImageEquationRoots( x, re, im );
            } else {
                auto q_sqrt = sqrt( -q );
                auto x = - q_sqrt * 2.0 * sgn(r) * sinh( f ) - a_3;
                auto re = q_sqrt * sgn(r) * sinh( f ) - a_3;
                auto im = SQRT_3 * q_sqrt * cosh( f );
                myroots = new CubicImageEquationRoots( x, re, im );
            }
        }
    }
    return myroots;
}

std::list<std::unique_ptr<AbstractPolynomialEquation> > CubicNormalEquation::decomposed() const
{
    std::list<std::unique_ptr<AbstractPolynomialEquation> > eqs;
    eqs.push_back( std::make_unique<LinerNormalEquation>( -this->roots()->root( 1 )->real() ) );
    if( roots()->rootsType() == CUB_REAL ) {
        eqs.push_back( std::make_unique<LinerNormalEquation>( -this->roots()->root( 2 )->real() ) );
        eqs.push_back( std::make_unique<LinerNormalEquation>( -this->roots()->root( 3 )->real() ) );
    }
    else if( roots()->rootsType() == CUB_IMAGE ) {
        eqs.push_back( std::make_unique<QuadraticNormalEquation>( -2.0*this->roots()->root( 2 )->real(), fabs( this->roots()->root( 2 )->toComplex() ) ) );
    }
    return eqs;
}

std::string CubicNormalEquation::toString() const
{
    return std::string("x^3")
            + ( my2 > 0 ? std::string("+") : std::string() ) + ( my2==0 ? std::string() : ( std::to_string( my2 ) + std::string("*x^2") ) )
            + ( my1 > 0 ? std::string("+") : std::string() ) + ( my1==0 ? std::string() : ( std::to_string( my1 ) + std::string("*x") ) )
            + ( my0 > 0 ? std::string("+") : std::string() ) + ( my0==0 ? std::string() : std::to_string( my0 ) );
}

Lösungsverwalterklassen für Gleichungen LinerEquationRoot, QuadraticRealEquationRoots, QuadraticImageEquationRoots. CubicRealEquationRoots, CubicImageEquationRoots werden von der gemeinsamen Schnittstelle AbstractPolynomialEquationRoots geerbt und auf zwei Arten klassifiziert. Der erste ist der Grad der Gleichung, der zweite ist die Eigenschaft der Wurzeln der Gleichung. Eine lineare Gleichung ist ein trivialer Fall - sie hat eine reelle Wurzel. Quadratische und kubische Gleichungen können komplexe Wurzeln haben. Solche Wurzeln existieren immer paarweise x 1 = R + i M und x 2 = R – i M. Daher werden sie als Real- und Imaginärteil gespeichert. Echte Wurzeln werden als eigene Werte gespeichert.

Schnittstelle

class AbstractPolynomialEquationRoots
{
public:
    virtual ~AbstractPolynomialEquationRoots() { /*std::cout << "delete AbstractPolynomialEquationRoots";*/ }
    virtual int rootsType() const = 0;
    virtual std::unique_ptr<AbstractPolynomialRoot> root(int number) const = 0;

    friend std::ostream &operator<< (std::ostream &out, const AbstractPolynomialEquationRoots *root) {
        out << root->toString();
        return out;
    }
protected:
    virtual std::string toString() const = 0;
};

Lineare Gleichungswurzeln

class LinerEquationRoot : public AbstractPolynomialEquationRoots
{
public:
    explicit LinerEquationRoot(const double &root);
    virtual ~LinerEquationRoot() {}
    virtual int rootsType() const override {return LINE;}
    virtual std::unique_ptr<AbstractPolynomialRoot> root(int number) const override {
        return number == 1 ? std::make_unique<RealPolynomialRoot>(myx1) : nullptr;
    }
protected:
    virtual std::string toString() const override;

private:
    double myx1;
};

Implementierung

LinerEquationRoot::LinerEquationRoot(const double &root)
    : myx1(root)
{
}

std::string LinerEquationRoot::toString() const
{
    return "x = " + std::to_string(myx1) + ".";
}

Die Wurzeln einer quadratischen Gleichung

class QuadraticRealEquationRoots : public AbstractPolynomialEquationRoots
{
public:
    QuadraticRealEquationRoots(const double &root1, const double &root2);
    virtual ~QuadraticRealEquationRoots() {}
    virtual int rootsType() const override {return QUADRAT_REAL;}
    virtual std::unique_ptr<AbstractPolynomialRoot> root(int number) const override;

protected:
    virtual std::string toString() const override;
private:
    double myx1;
    double myx2;
};

class QuadraticImageEquationRoots : public AbstractPolynomialEquationRoots
{
public:
    QuadraticImageEquationRoots( double real,  double image);
    virtual ~QuadraticImageEquationRoots() {}
    virtual int rootsType() const override {return QUADRAT_IMAGE;}
    virtual std::unique_ptr<AbstractPolynomialRoot> root(int number) const override;

protected:
    virtual std::string toString() const override;
private:
    double myre;
    double myim;
};

Implementierung

QuadraticRealEquationRoots::QuadraticRealEquationRoots(const double &root1, const double &root2)
    : myx1( root1 ), myx2( root2 )
{
}

std::unique_ptr<AbstractPolynomialRoot> QuadraticRealEquationRoots::root(int number) const
{
    switch (number) {
    case 1:
        return std::make_unique<RealPolynomialRoot>(myx1);
    case 2:
        return std::make_unique<RealPolynomialRoot>(myx2);
    default:
        return nullptr;
    }
}

std::string QuadraticRealEquationRoots::toString() const
{
    return "x1 = " + std::to_string( myx1 ) + "; x2 = " + std::to_string( myx2 ) + ".";
}

QuadraticImageEquationRoots::QuadraticImageEquationRoots(double real, double image)
    : myre( real ), myim( image )
{
}

std::unique_ptr<AbstractPolynomialRoot> QuadraticImageEquationRoots::root(int number) const
{
    switch (number) {
    case 1:
        return std::make_unique<ImagePolynomialRoot>(myre, myim);
    case 2:
        return std::make_unique<ImagePolynomialRoot>(myre, -myim);
    default:
        return nullptr;
    }
}

std::string QuadraticImageEquationRoots::toString() const
{
    return "x1 = " + std::to_string( myre ) + " + j" + std::to_string( myim )
            + "; x2 = " + std::to_string( myre ) + " - j" + std::to_string( myim ) + ".";
}

Die Wurzeln der kubischen Gleichung

class CubicRealEquationRoots : public AbstractPolynomialEquationRoots
{
public:
    CubicRealEquationRoots(const double &root1, const double &root2, const double &root3);
    virtual ~CubicRealEquationRoots() {}
    virtual int rootsType() const override {return CUB_REAL;}
    virtual std::unique_ptr<AbstractPolynomialRoot> root(int number) const override;

protected:
    virtual std::string toString() const override;
private:
    double myx1;
    double myx2;
    double myx3;
};

class CubicImageEquationRoots : public AbstractPolynomialEquationRoots
{
public:
    CubicImageEquationRoots(const double &root, const double &real, const double &image);
    virtual ~CubicImageEquationRoots() {}
    virtual int rootsType() const override {return CUB_IMAGE;}
    virtual std::unique_ptr<AbstractPolynomialRoot> root(int number) const override;

protected:
    virtual std::string toString() const override;
private:
    double myx1;
    double myre;
    double myim;
};

Implementierung

CubicRealEquationRoots::CubicRealEquationRoots(const double &root1, const double &root2, const double &root3)
    : myx1( root1 ), myx2( root2 ), myx3( root3 )
{
}

std::unique_ptr<AbstractPolynomialRoot> CubicRealEquationRoots::root(int number) const
{
    switch (number) {
    case 1:
        return std::make_unique<RealPolynomialRoot>(myx1);
    case 2:
        return std::make_unique<RealPolynomialRoot>(myx2);
    case 3:
        return std::make_unique<RealPolynomialRoot>(myx3);
    default:
        return nullptr;
    }
}

std::string CubicRealEquationRoots::toString() const
{
    return "x1 = " + std::to_string( myx1 )
            + "; x2 = " + std::to_string( myx2 )
            + "; x3 = " + std::to_string( myx3 );
}

CubicImageEquationRoots::CubicImageEquationRoots(const double &root, const double &real, const double &image)
    : myx1( root ), myre( real ), myim( image )
{
}

//-----------------------------------------------------------

std::unique_ptr<AbstractPolynomialRoot> CubicImageEquationRoots::root(int number) const
{
    switch (number) {
    case 1:
        return std::make_unique<RealPolynomialRoot>(myx1);
    case 2:
        return std::make_unique<ImagePolynomialRoot>(myre, myim);
    case 3:
        return std::make_unique<ImagePolynomialRoot>(myre, -myim);
    default:
        return nullptr;
    }
}

std::string CubicImageEquationRoots::toString() const
{
    return "x1 = " + std::to_string( myx1 )
            + "; x2 = " + (myre == 0 ? std::string() : std::to_string( myre ) + std::string(" + ")) + "j" + std::to_string( myim )
            + "; x3 = " + (myre == 0 ? std::string() : std::to_string( myre ) + std::string(" ")) + "- j" + std::to_string( myim )
            + ".";
}

Um auf die Werte der Wurzeln zuzugreifen, werden RealPolynomialRoot- und ImagePolynomialRoot-Objekte erstellt, die von AbstractPolynomialRoot geerbt werden. Die Wurzel wird als intelligenter Unique_ptr-Zeiger zurückgegeben . Mit dieser Technik können Sie einen Zeiger auf ein Objekt mit unbegrenzter Lebensdauer in ein Objekt umwandeln, das gelöscht wird, wenn es den Gültigkeitsbereich verlässt.

Schnittstelle

class AbstractPolynomialRoot
{
public:
    virtual std::complex<double> toComplex() const = 0;
    virtual double real() const = 0;
    virtual double image() const = 0;
    virtual bool isReal() const = 0;
};

Echte Wurzel

class RealPolynomialRoot : public AbstractPolynomialRoot
{
public:
    explicit RealPolynomialRoot( const double &x )
        : myx(x) {}
    virtual std::complex<double> toComplex() const override { return std::complex<double>(myx, 0); }
    virtual double real() const override { return myx; }
    virtual double image() const override { return 0; }
    virtual bool isReal() const override { return true; }
private:
    double myx;
};

imaginäre Wurzel

class ImagePolynomialRoot : public AbstractPolynomialRoot
{
public:
    ImagePolynomialRoot( const double &r, const double &i )
        : myr(r), myi(i) {}
    virtual std::complex<double> toComplex() const override { return std::complex<double>(myr, myi); }
    virtual double real() const override { return myr; }
    virtual double image() const override { return myi; }
    virtual bool isReal() const override { return false; }
private:
    double myr, myi;
};

Fazit

Trotz der scheinbaren Einfachheit sind die Formeln zum Lösen von Polynomgleichungen sehr komplexe Ausdrücke. Neben der Lösung einer Gleichung dritten Grades ist die Ferrari-Lösung für Gleichungen vierten Grades bekannt. In anderen Fällen müssen numerische Methoden verwendet werden. Gleichzeitig sind spezielle Methoden erforderlich, um komplexe Wurzeln zu finden. Ich plane, zukünftige Artikel zu diesen Themen zu schreiben.

Рекомендуємо хостинг TIMEWEB
Рекомендуємо хостинг TIMEWEB
Stabiles Hosting des sozialen Netzwerks EVILEG. Wir empfehlen VDS-Hosting für Django-Projekte.

Magst du es? In sozialen Netzwerken teilen!

Kommentare

Nur autorisierte Benutzer können Kommentare posten.
Bitte Anmelden oder Registrieren
Letzte Kommentare
ИМ
Игорь Максимов5. Oktober 2024 07:51
Django – Lektion 064. So schreiben Sie eine Python-Markdown-Erweiterung Приветствую Евгений! У меня вопрос. Можно ли вставлять свои классы в разметку редактора markdown? Допустим имея стандартную разметку: <ul> <li></li> <li></l…
d
dblas55. Juli 2024 11:02
QML - Lektion 016. SQLite-Datenbank und das Arbeiten damit in QML Qt Здравствуйте, возникает такая проблема (я новичок): ApplicationWindow неизвестный элемент. (М300) для TextField и Button аналогично. Могу предположить, что из-за более новой верси…
k
kmssr8. Februar 2024 18:43
Qt Linux - Lektion 001. Autorun Qt-Anwendung unter Linux как сделать автозапуск для флэтпака, который не даёт создавать файлы в ~/.config - вот это вопрос ))
Qt WinAPI - Lektion 007. Arbeiten mit ICMP-Ping in Qt Без строки #include <QRegularExpressionValidator> в заголовочном файле не работает валидатор.
EVA
EVA25. Dezember 2023 10:30
Boost - statisches Verknüpfen im CMake-Projekt unter Windows Ошибка LNK1104 часто возникает, когда компоновщик не может найти или открыть файл библиотеки. В вашем случае, это файл libboost_locale-vc142-mt-gd-x64-1_74.lib из библиотеки Boost для C+…
Jetzt im Forum diskutieren
J
JacobFib17. Oktober 2024 03:27
добавить qlineseries в функции Пользователь может получить любые разъяснения по интересующим вопросам, касающимся обработки его персональных данных, обратившись к Оператору с помощью электронной почты https://topdecorpro.ru…
JW
Jhon Wick1. Oktober 2024 15:52
Indian Food Restaurant In Columbus OH| Layla’s Kitchen Indian Restaurant If you're looking for a truly authentic https://www.laylaskitchenrestaurantohio.com/ , Layla’s Kitchen Indian Restaurant is your go-to destination. Located at 6152 Cleveland Ave, Colu…
КГ
Кирилл Гусарев27. September 2024 09:09
Не запускается программа на Qt: точка входа в процедуру не найдена в библиотеке DLL Написал программу на C++ Qt в Qt Creator, сбилдил Release с помощью MinGW 64-bit, бинарнику напихал dll-ки с помощью windeployqt.exe. При попытке запуска моей сбилженной программы выдаёт три оши…
F
Fynjy22. Juli 2024 04:15
при создании qml проекта Kits есть но недоступны для выбора Поставил Qt Creator 11.0.2. Qt 6.4.3 При создании проекта Qml не могу выбрать Kits, они все недоступны, хотя настроены и при создании обычного Qt Widget приложения их можно выбрать. В чем может …

Folgen Sie uns in sozialen Netzwerken